Online Learning: How to Master these 6 Key Data Science Concepts

By Claudio Buttice | Last updated: April 4, 2020

Note: This post contains affiliate links. For more information, please see our disclosures here.

Key Takeaways

Data science is one of the hottest fields in tech, but how can you get into the field? Here are some fundamentals that you can learn on your own.

Source: Bplanet/iStockphoto

Self-isolation is the best choice for your own self-care and to help protect yourself from spreading COVID-19 to others — we all now know that. But self-isolation doesn’t need to be a negative experience.

Turn your time at home into an opportunity for self-care with some online learning as we finally get enough time to take care of ourselves.

Doing online learning might be an attractive option for self-isolation to learn some new, useful tech skills.


Data science is a complex discipline that identifies significant information drawn from gigantic amounts of structured and unstructured data.

Probably the hardest part of this field of knowledge is to learn how to make sense of all this data, and transform this immense amount of scattered info into meaningful, actionable insights.


A competent data analyst knows how to spot those patterns that enable organizations to devise effective strategies, find new opportunities, and enhance their marketing efforts.

A job in data science is one of the most well-paid ones available, and data scientists are always sought after by even the largest company.

Is it really possible to teach yourself data science?

Can you go from just basic IT skills to becoming a master analyst?


The answers are both "yes", provided you choose the right courses and take them with due diligence.

Here we will present you with a roundup of the most important data science concepts you must learn to become a self-taught data scientist, all of which you can learn from the comfort of your own home.

You can take all these courses through Coursera for less than $100 each. (To learn more about what a data scientist does, see Job Role: Data Scientist.)

Understanding Data Scienceunseen pixel

Plain and simple, first things first. You cannot become a data scientist unless you understand what data science really is, and an introductory course that provides you an overview of this discipline is the first step you should take.

Core concepts include why and how data science is so important for business and how it can be applied. You must be able to understand what regression analysis is, and how the process of mining a data set works, as well as what tools and algorithms you are going to use on a daily basis to master this discipline.

The best courses are those which also focus on methodology, so you can be sure that the data that you will collect is used for hands-on problem-solving in a relevant way.

The basics should include understanding how to properly manipulate it in order to tackle the most common issues, and how to make sense of the feedback after a model is built and deployed.

Take the course

Basic Python Programming

An introductory course that teaches you statistics by application is the best place to start learning data science, and Python programming represents the most basic skill required to understand this field.

Before working with data, you need to understand how to extract it in its rawest form, and Python represents the most basic instrument for manipulating and refining it.

The first courses you need to take should teach you the fundamentals of the Python programming environment needed to make sense of CSV files and to find your way through complex data structures.

Core concepts include understanding t-tests, sampling and distributions, how to query a Pandas DataFrame structure, and how to extract, clean and process tabular data.

Take the course

Databases and SQL

The vast majority of data is mined from databases, and at least a portion of it exists in a structured form.

SQL stands for “Structured Query Language” and it’s the most powerful language to “speak” with databases in order to understand them, explore every nook and cranny, and extract all the meaningful data you need for the problem at hand.

Knowing how to work with SQL, create database instances in the cloud, run SQL queries, and access databases and real-world data sets from Jupyter notebooks is a must-have skill set for any data scientist.

Take the course

Statistics and the Bayesian Approach

Some degree of knowledge in statistics is a necessity in data science. Although statistics is a really broad field, a data analyst requires a grasp of at least some concepts in statistics and probability theory to provide practical insights to businesses and organizations. (For more on data science, see 12 Key Tips for Learning Data Science.)

You need to combine theory with practice by learning core concepts such as distribution, hypothesis testing and regression, as well as the fundamental Bayesian probability theory. Most machine learning modules are, in fact, built on Bayesian probability models.

The Bayesian approach is an intuitive one that moves from probability to the analysis of data and allows for better accounting of uncertainty as well as providing actionable statements of assumptions that can be used in practice.

Take the course

Algorithmic Programming Techniques

To master data science you need to learn how to solve various computational problems with algorithmic techniques. Algorithms are used to manipulate data through efficient data structures.

You need to learn how to implement these structures in different programming languages, what to expect from them, and how to break large problems into more granular pieces. There are many strategies that must be learned to design an efficient algorithm, such as how to keep a binary tree balanced, how to resize a dynamic array, and how to solve problems recursively.

Take the course

Machine Learning

Machine learning is the science that allows computers to act outside the boundaries of the scripts they’re programmed to run. It’s a pervasive science that has a lot of applications in the real world, and data mining is one of them.

But to approach machine learning you need to possess all the skills mentioned above. Machine learning algorithms need to be programmed with Python, and statistical approaches are the most effective ones to “teach” a machine how to become smarter.

The whole field of machine learning is extremely vast, and includes various subtopics such as supervised and unsupervised learning, model evaluation and deep learning.

Although you do not necessarily need to dive as deep as learning how to program the most advanced neural networks, the more you know about the many applications of machine learning in data science, the better.

Take the course

Final Thoughts

It doesn’t matter whether you’re a university student looking for new ways to broaden your horizons, or a professional wanting to enhance his or her resume.

Learning these key data science concepts is all you need to give yourself a competitive advantage in the industry.


Share This Article

  • Facebook
  • LinkedIn
  • Twitter

Written by Claudio Buttice | Data Analyst, Contributor

Profile Picture of Claudio Buttice

Dr. Claudio Butticè, Pharm.D., is a former clinical and hospital pharmacist who worked for several public hospitals in Italy, as well as for the humanitarian NGO Emergency. He is now an accomplished book author who has written on topics such as medicine, technology, world poverty, human rights, and science for publishers such as SAGE Publishing, ABC-Clio, and Mission Bell Media. His latest book is "Universal Health Care" (Greenwood Publishing, 2019).

A data analyst and freelance journalist as well, many of his articles have been published in magazines such as Cracked, The Elephant, Digital Journal, The Ring of Fire, and Business Insider. Dr. Butticè also published pharmacology and psychology papers on several clinical journals, and works as a medical consultant and advisor for many companies across the globe.

Related Articles

Go back to top