Shannon's Law
Definition  What does Shannon's Law mean?
Shannon’s law is a mathematical theory for encoding information by applying a value (either 0 or 1) to it. This formulation is considered the foundation for digital communications. Shannon's law was conceived by mathematician Claude Shannon, who demonstrated that mathematics could be used to calculate the theoretical highest amount of information transmitted by a communications system based on the physical laws of thermodynamics. Shannon's Law states that the maximum attainable errorfree data speed, in bits per second (bps), is a function of the signaltonoise ratio and bandwidth.
Techopedia explains Shannon's Law
Shannon's law is stated as shown below:
C = B log2< (1 + S/N) where:
C is the highest attainable errorfree data speed in bps that can be handled by a communication channel.
B is the bandwidth of the channel in hertz.
S is the average signal power received over the bandwidth calculated in watts (or volts squared).
N is the average interference power or noise over the bandwidth calculated in watts (or volts squared)
S/N is the signaltonoise ratio (SNR) of the communication signal to the Gaussian noise interference depicted as the linear power ratio.
The function log2 signifies the base2 logarithm. All logarithms are exponents. Assuming that x and y are two numbers, the base2 logarithm of x is y, provided that 2y = x.
Shannon’s explanation of information for communication networks helps to identify the important relationships between several network elements.
Shannon’s equations helps engineers determine the amount of information that could be carried over the channels associated with an ideal system. Shannon’s is still the base for engineers and communication scientists in their neverending quest for faster, more robust, and more energyefficient communication systems. He showed the data compression principles mathematically and also showed how controlled error rates can be used to assure integrity when information is carried over noisy channels.
Practical communications systems that can be operated close to the theoretical speed limit described by Shannon's law have not yet been devised. Some systems that employ advanced encoding and decoding are able to achieve 50 percent of the limit specified by the Shannon for a channel with fixed signaltonoise ratio and bandwidth.
Related Articles
Related Products

3 FREE Network Management Tools  Simplify everyday tasks and troubleshooting. 100% Free  No Expiration  Download them All

FREE Network Analyzer & Bandwidth Monitoring Bundle  FREE Network Analyzer & Bandwidth Monitoring Bundle makes it easy to quickly identify the types of network traffic by flow data capture and interface monitoring for bandwidth usage in real time!
Email Newsletter
Join thousands of others with our weekly newsletter
Please Wait...
Resources
The 4th Era of IT Infrastructure: Superconverged Systems:
Learn the benefits and limitations of the 3 generations of IT infrastructure – siloed, converged and hyperconverged – and discover how the 4th...
Approaches and Benefits of Network Virtualization:
Businesses today aspire to achieve a softwaredefined datacenter (SDDC) to enhance business agility and reduce operational complexity. However, the...
Free EBook: Public Cloud Guide:
This white paper is for leaders of Operations, Engineering, or Infrastructure teams who are creating or executing an IT roadmap.
Free Tool: Virtual Health Monitor:
Virtual Health Monitor is a free virtualization monitoring and reporting tool for VMware, HyperV, RHEV, and XenServer environments.
Free 30 Day Trial – Turbonomic:
Turbonomic delivers an autonomic platform where virtual and cloud environments selfmanage in realtime to assure application performance.