Beamforming

What Does Beamforming Mean?

Beamforming is a kind of radio frequency (RF) management in which an access point makes use of various antennas to transmit the exact same signal. Beamforming is considered a subset of smart antennas or Advanced Antenna Systems (AAS).

Advertisements

By broadcasting various signals and examining client feedback, the wireless LAN infrastructure could very well modify the signals it transmits. This way, it can identify the ideal path the signal must follow to get to a client device. Beamforming efficiently enhances the uplink and downlink SNR performances as well as the overall network capacity.

Beamforming is also known as spatial filtering.

Techopedia Explains Beamforming

Beamforming entails an advanced algorithm that keeps track of several parameters, such as terminal location, speed, distance, the level of QoS required, signal/noise level and traffic type. This gives beamforming a greater advantage when it comes to signal improvement.

Beamforming functions by shaping the beam in the direction of the receiver. A number of antennas broadcast exactly the same signal; however, each one is specifically distorted in the phase. An algorithm applies a signature to every transmission.

The various transmitted shapes merge in the air by normal coherence of the electromagnetic waves, thereby forming a virtual "beam", which is a signal that is targeted toward the destination. If the beam travels to undesired locations (locations other than the destined receiver), the phases will collide and be destroyed.

In theory, the increase in the number of antennas used in the array results in a much stronger beamforming effect; every additional broadcast antenna could possibly double the signal.

Beamforming has several advantages:

  • Higher SNR: The highly directional transmission enhances the link budget, improving the range for both open-space as well as indoor penetration.
  • Interference prevention and rejection: Beamforming prevails over internal and external co-channel interference (CCI) by taking advantage of the antennas' spatial properties.
  • Higher network efficiency: By substantially minimizing CCI, beamforming allows much denser deployments compared to single antenna systems. The possibility of operating high-order modulations (16QAM, 64QAM ) greatly improves the overall capacity.
Advertisements

Related Terms

Margaret Rouse

Margaret is an award-winning technical writer and teacher known for her ability to explain complex technical subjects to a non-technical business audience. Over the past twenty years, her IT definitions have been published by Que in an encyclopedia of technology terms and cited in articles by the New York Times, Time Magazine, USA Today, ZDNet, PC Magazine, and Discovery Magazine. She joined Techopedia in 2011. Margaret's idea of a fun day is helping IT and business professionals learn to speak each other’s highly specialized languages.