Single-Layer Neural Network

What Does Single-Layer Neural Network Mean?

A single-layer neural network represents the most simple form of neural network, in which there is only one layer of input nodes that send weighted inputs to a subsequent layer of receiving nodes, or in some cases, one receiving node. This single-layer design was part of the foundation for systems which have now become much more complex.

Advertisements

Techopedia Explains Single-Layer Neural Network

One of the early examples of a single-layer neural network was called a “perceptron.” The perceptron would return a function based on inputs, again, based on single neurons in the physiology of the human brain. In some senses, perceptron models are much like “logic gates” fulfilling individual functions: A perceptron will either send a signal, or not, based on the weighted inputs. Another type of single-layer neural network is the single-layer binary linear classifier, which can isolate inputs into one of two categories.

Single-layer neural networks can also be thought of as part of a class of feedforward neural networks, where information only travels in one direction, through the inputs, to the output. Again, this defines these simple networks in contrast to immensely more complicated systems, such as those that use backpropagation or gradient descent to function.

Advertisements

Related Terms

Latest Artificial Intelligence Terms

Related Reading

Margaret Rouse

Margaret Rouse is an award-winning technical writer and teacher known for her ability to explain complex technical subjects to a non-technical, business audience. Over the past twenty years her explanations have appeared on TechTarget websites and she's been cited as an authority in articles by the New York Times, Time Magazine, USA Today, ZDNet, PC Magazine and Discovery Magazine.Margaret's idea of a fun day is helping IT and business professionals learn to speak each other’s highly specialized languages. If you have a suggestion for a new definition or how to improve a technical explanation, please email Margaret or contact her…