Sparse Autoencoder

What Does Sparse Autoencoder Mean?

A sparse autoencoder is one of a range of types of autoencoder artificial neural networks that work on the principle of unsupervised machine learning. Autoencoders are a type of deep network that can be used for dimensionality reduction – and to reconstruct a model through backpropagation.

Advertisements

Techopedia Explains Sparse Autoencoder

Autoencoders seek to use items like feature selection and feature extraction to promote more efficient data coding. Autoencoders often use a technique called backpropagation to change weighted inputs, in order to achieve dimensionality reduction, which in a sense scales down the input for corresponding results. A sparse autoencoder is one that has small numbers of simultaneously active neural nodes.

Advertisements

Related Terms

Latest Artificial Intelligence Terms

Related Reading

Margaret Rouse

Margaret Rouse is an award-winning technical writer and teacher known for her ability to explain complex technical subjects to a non-technical, business audience. Over the past twenty years her explanations have appeared on TechTarget websites and she's been cited as an authority in articles by the New York Times, Time Magazine, USA Today, ZDNet, PC Magazine and Discovery Magazine.Margaret's idea of a fun day is helping IT and business professionals learn to speak each other’s highly specialized languages. If you have a suggestion for a new definition or how to improve a technical explanation, please email Margaret or contact her…