Don't miss an insight. Subscribe to Techopedia for free.


Sparse Autoencoder

What Does Sparse Autoencoder Mean?

A sparse autoencoder is one of a range of types of autoencoder artificial neural networks that work on the principle of unsupervised machine learning. Autoencoders are a type of deep network that can be used for dimensionality reduction – and to reconstruct a model through backpropagation.


Techopedia Explains Sparse Autoencoder

Autoencoders seek to use items like feature selection and feature extraction to promote more efficient data coding. Autoencoders often use a technique called backpropagation to change weighted inputs, in order to achieve dimensionality reduction, which in a sense scales down the input for corresponding results. A sparse autoencoder is one that has small numbers of simultaneously active neural nodes.


Related Terms