Restricted Boltzmann Machine

Why Trust Techopedia

What Does Restricted Boltzmann Machine Mean?

A restricted Boltzmann machine (RBM) is a type of artificial neural network invented by Geoff Hinton, a pioneer in machine learning and neural network design.

Advertisements

This type of generative network is useful for filtering, feature learning and classification, and it employs some types of dimensionality reduction to help tackle complicated inputs.

Techopedia Explains Restricted Boltzmann Machine

The restricted Boltzmann machine is so-called because there is no communication between layers in the model, which is the “restriction” of the model. Experts explain that RBM nodes make “stochastic” decisions, or that these are randomly determined. Various weights change the structure of the input, and activation functions process the output of a node. Like other types of similar systems, the restricted Boltzmann machine operates with input layers, hidden layers and output layers to achieve machine learning results. The RBM has also been useful in creating more sophisticated models, such as deep belief networks, by stacking individual RBMs together.

Advertisements

Related Terms

Margaret Rouse
Technology Specialist
Margaret Rouse
Technology Specialist

Margaret is an award-winning writer and educator known for her ability to explain complex technical topics to a non-technical business audience. Over the past twenty years, her IT definitions have been published by Que in an encyclopedia of technology terms and cited in articles in the New York Times, Time Magazine, USA Today, ZDNet, PC Magazine, and Discovery Magazine. She joined Techopedia in 2011. Margaret’s idea of ​​a fun day is to help IT and business professionals to learn to speak each other’s highly specialized languages.