Restricted Boltzmann Machine

What Does Restricted Boltzmann Machine Mean?

A restricted Boltzmann machine (RBM) is a type of artificial neural network invented by Geoff Hinton, a pioneer in machine learning and neural network design.


This type of generative network is useful for filtering, feature learning and classification, and it employs some types of dimensionality reduction to help tackle complicated inputs.

Techopedia Explains Restricted Boltzmann Machine

The restricted Boltzmann machine is so-called because there is no communication between layers in the model, which is the “restriction” of the model. Experts explain that RBM nodes make “stochastic” decisions, or that these are randomly determined. Various weights change the structure of the input, and activation functions process the output of a node. Like other types of similar systems, the restricted Boltzmann machine operates with input layers, hidden layers and output layers to achieve machine learning results. The RBM has also been useful in creating more sophisticated models, such as deep belief networks, by stacking individual RBMs together.


Related Terms

Margaret Rouse

Margaret Rouse is an award-winning technical writer and teacher known for her ability to explain complex technical subjects to a non-technical, business audience. Over the past twenty years her explanations have appeared on TechTarget websites and she's been cited as an authority in articles by the New York Times, Time Magazine, USA Today, ZDNet, PC Magazine and Discovery Magazine.Margaret's idea of a fun day is helping IT and business professionals learn to speak each other’s highly specialized languages. If you have a suggestion for a new definition or how to improve a technical explanation, please email Margaret or contact her…