Deep Residual Network

Why Trust Techopedia

What Does Deep Residual Network Mean?

A deep residual network (deep ResNet) is a type of specialized neural network that helps to handle more sophisticated deep learning tasks and models. It has received quite a bit of attention at recent IT conventions, and is being considered for helping with the training of deep networks.

Advertisements

Techopedia Explains Deep Residual Network

In deep learning networks, a residual learning framework helps to preserve good results through a network with many layers. One problem commonly cited by professionals is that with deep networks composed of many dozens of layers, accuracy can become saturated, and some degradation can occur. Some talk about a different problem called "vanishing gradient" in which the gradient fluctuations become too small to be immediately useful.

The deep residual network deals with some of these problems by using residual blocks, which take advantage of residual mapping to preserve inputs. By utilizing deep residual learning frameworks, engineers can experiment with deeper networks that have specific training challenges.

Advertisements

Related Terms

Margaret Rouse
Technology expert
Margaret Rouse
Technology expert

Margaret is an award-winning writer and educator known for her ability to explain complex technical topics to a non-technical business audience. Over the past twenty years, her IT definitions have been published by Que in an encyclopedia of technology terms and cited in articles in the New York Times, Time Magazine, USA Today, ZDNet, PC Magazine, and Discovery Magazine. She joined Techopedia in 2011. Margaret’s idea of ​​a fun day is to help IT and business professionals to learn to speak each other’s highly specialized languages.