Reward Path

What Does Reward Path Mean?

In reinforcement learning, a reward path is a path that an agent takes in order to obtain cumulative rewards. This terminology isn't really used very much on its own in machine learning, but the concept of reward is central to many machine learning algorithms and Markov decision process models.


Techopedia Explains Reward Path

A Markov decision process runs an agent through a sequence of states and analyzes the result. Q-learning or reinforcement learning practices run the model continually, looking for rewards and adapting the model appropriately. So you could say that the reward path is the path that generates the most reward.

Another way to explain a reward path in IT is to contrast it with a reward pathway in the human brain. In the human brain, a reward pathway is associated with a dopamine hit. In reinforcement learning and other forms of machine learning, the dopamine is not present, and the reward is based on a program to reward function instead.

One prime example is a reinforcement learning program that helps a computer learn to play a challenging video game. Programmers define the reward as surviving the game, and then the reinforcement learning model runs through the Markov decision process numerous times, building its knowledge of how to obtain reward.

Reinforcement learning and similar technologies are playing a major role in helping computers and technologies to evolve to a higher level of artificial intelligence.


Related Terms

Margaret Rouse

Margaret Rouse is an award-winning technical writer and teacher known for her ability to explain complex technical subjects to a non-technical, business audience. Over the past twenty years her explanations have appeared on TechTarget websites and she's been cited as an authority in articles by the New York Times, Time Magazine, USA Today, ZDNet, PC Magazine and Discovery Magazine.Margaret's idea of a fun day is helping IT and business professionals learn to speak each other’s highly specialized languages. If you have a suggestion for a new definition or how to improve a technical explanation, please email Margaret or contact her…